Extreme scale matrix factorizations in Exploration Seismology

Felix J. Herrmann

Georgia Institute of Technology

Seismic inversion

Infer 3D images \& velocity models from multi-experiment data:

- $\mathcal{O}\left(10^{9}\right)$ unknowns
- $\mathcal{O}\left(10^{15}\right)$ datapoints

All morine seismic suveeys involve a source (S) ond some kind of array or receiver sensors (individual

displayed), ond 4 a VSP (verical seismic profile) geometry, where the receevers ore positioned in o well.

Wave-equation based inversion

Retrieve medium parameters \mathbf{m} from partial measurements of the solution of the wave-equation: $A(\mathbf{m}) \mathbf{u}_{i}=\mathbf{q}_{i}$

Wave-equation based inversion

Large-scale parameter estimation problem:
observed data

$$
\underset{\mathbf{m}}{\operatorname{minimize}} \Phi(\mathbf{m})=\frac{1}{M} \sum_{i=1}^{M} \phi_{i}(\mathbf{m})=\frac{1}{2}\left\|P_{i} \mathbf{u}_{i}-\mathbf{d}_{i}\right\|^{2}
$$

- number of field experiments M is large $\mathcal{O}\left(10^{3}-10^{5}\right)$
- \mathbf{d}_{i} expensive to collect $\mathcal{O}\left(10^{6}-10^{7}\right)$ data points at total survey costs of $\$ 30-200 \mathrm{M}$
- ϕ_{i} expensive to evaluate $\mathcal{O}\left(10^{14}\right)$ flops per experiment $\mathrm{w} / \mathrm{HPC}$ costs of $\$ 25-500 \mathrm{M}$
- \mathbf{m} is extremely $\mathcal{O}\left(10^{6}-10^{9}\right)$ large requiring local (= gradient-based) optimization

Research questions

"How can we exploit low-rank structure underlying surface seismic data and subsurface image volumes at low to mid frequencies?"

- reduce acquisition time, costs, environmental imprint of via randomized sampling \& full azimuth processing
- lower storage \& IO cost of wave-equation based inversion via on-thefly data generation from data represented in factorized form
- form \& manipulate massive full-subsurface offset image volumes via randomized probing of the double two-way wave equation

Motivation - seismic surface data

Large 5D volumes of seismic data

Motivation - seismic surface data

Large 5D volumes of seismic data

Will soon reach petabytes.

Motivation - image volumes

Extremely large 6D image volumes
quadratic in image size

Motivation - image volumes

Extremely large 6D image volumes
quadratic in image size

Full-azimuth seismic data processing with coil acquisition
Rajiv Kumar, Nick Moldoveanu, Keegan Lensink, and Felix J. Herrmann

Georgia Institute of Technology

3D seismic

Challenge seismic data collected in 5 dimensions

- 1 for time
- 2 for the receivers
- 2 for the sources

Compressive Sensing works well for vectorial transform-domain sparsity

- curvelets \& other non-separable transforms are too slow \& memory intensive
- prohibits scale up to 5D

Can we exploit a different kind of structure ...

Quick recap-matrix completion

Aleksandr Y. Aravkin, Rajiv Kumar, Hassan Mansour, Ben Recht, and Felix J. Herrmann, "Fast methods for denoising matrix completion formulations, with applications to robust seismic data interpolation", SIAM Journal on Scientific Computing, vol. 36, p. S237-S266, 2014
Rajiv Kumar, Haneet Wason, and Felix J. Herrmann, "Source separation for simultaneous towed-streamer marine acquisition -- a compressed sensing approach", Geophysics, vol. 80, p. WD73-WD88, 2015.
Rajiv Kumar, Curt Da Silva, Okan Akalin, Aleksandr Y. Aravkin, Hassan Mansour, Ben Recht, and Felix J. Herrmann, "Efficient matrix completion for seismic data reconstruction", Geophysics, vol. 80, p. V97-V114, 2015.
Curt Da Silva and Felix J. Herrmann, "Optimization on the Hierarchical Tucker manifold - applications to tensor completion", Linear Algebra and its Applications, vol. 481, p. 131-173, 2015.

Matrix completion

- signal structure
- low rank/fast decay of singular values
- sampling scheme
- missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure

conventional 5D data, 5 Hz monochromatic slice, Sx-Sy matricization

Low-rank structure

conventional 5D data, 5 Hz monochromatic slice, $\mathrm{Sx}=\mathrm{Rx}$ matricization

Matrix completion

- signal structure
- low rank/fast decay of singular values
- sampling scheme
- missing data increase rank in "transform domain"
- recovery using rank penalization scheme

Low-rank structure

jittered data, 5 Hz monochromatic slice, Sx -Sy matricization

Low-rank structure

jittered data, 5 Hz monochromatic slice, $\mathrm{Sx}=\mathrm{Rx}$ matricization

Matrix completion

- signal structure
- low rank/fast decay of singular values
- sampling scheme
- missing data increase rank in "transform domain"
- recovery using rank penalization scheme

[Rennie and Srebro 2005, Lee et. al. 2010, Recht and Re 2011]

$$
\mathbf{X}=\mathbf{L} \mathbf{R}^{H}
$$

$$
\mathbf{X} \in \mathbb{C}^{\mathbf{n}_{\mathrm{f}} \times \mathbf{n}_{\mathrm{rx}} \times \mathbf{n}_{\mathrm{sx}} \times \mathbf{n}_{\mathrm{ry}} \times \mathbf{n}_{\mathrm{sy}}}
$$

$\mathbf{L} \in \mathbb{C}^{\mathbf{n}_{\mathbf{f}} \times \mathbf{n}_{\mathbf{r x}} \times \mathbf{n}_{\mathbf{s x}} \times \mathbf{n}_{\mathbf{k}}}$
$\mathbf{R} \in \mathbb{C}^{\mathbf{n}_{\mathrm{f}} \times \mathbf{n}_{\mathrm{ry}} \times \mathbf{n}_{\mathbf{s y}} \times \mathbf{n}_{\mathbf{k}}}$

Factorized formulation

- Upper-bound on nuclear norm is defined as

$$
\left\|\mathbf{L R}^{H}\right\|_{*} \leq \frac{1}{2}\left\|\left[\begin{array}{l}
\mathbf{L} \\
\mathbf{R}
\end{array}\right]\right\|_{F}^{2}
$$

where $\|\cdot\|_{F}^{2}$ is sum of squares of all entries

- choose k explicitly \& avoid costly SVD's

Survey information - coil acquisition

Old vs new

Conventional acquisition

random coil acquisition

from https://www.slb.com/~/media/Files/resources/oilfield review/ors08/aut08/shooting seismic surveys in circles.pdf

Acquisition mask - non-canonical matrix

Acquisition information

3D overthrust model, $5 \mathrm{~km} \times 12 \mathrm{~km} \times 12 \mathrm{~km}$

I0404 sources @ 100m

40804 receivers @ 50m

Time length :3 seconds @ 0.004s

Interpolation from I-50 Hz

Acquisition information

3 D overthrust model, $5 \mathrm{~km} \times 12 \mathrm{~km} \times 12 \mathrm{~km}$

I0404 sources @ 100m
Unknown 20k X 20k matrix for each frequency!
40804 receivers @ 50m

Time length :3 seconds @ 0.004s

Interpolation from I-50 Hz

Frequency slice @ 7Hz ground truth

Frequency slice @ 7Hz observed

Frequency slice @ 7Hz interpolated

Frequency slice @ 7Hz residual

Common source gather ground truth

Common source gather subsampled

Common source gather interpolated

Common source gather ground truth

Computational \& memory advantages

Size of fully sampled interpolated volume : 2.5 TB

Save only low-rank factors

- compression rate: 99.5\%
- size of final compressed 5D seismic volume : I5GB

Non-canonical vs. canonical
 $-396 \times 396 \times 50 \times 50$ volume ($\sim 5.8 G B$)

	Frequency (Hz)	Parameter Size	SNR	Compression Ratio
Non-canonical	3	71 MB	42.8	98.8%
canonical	3	501 MB	42.9	91.6%
Non-canonical	6	421 MB	43.0	92.9%
canonical	6	1194 MB	43.1	79.9%

Non-canonical vs. Nyquist
 $-396 \times 396 \times 50 \times 50$ volume ($\sim 5.8 \mathrm{~GB}$)

Frequency (Hz)

Non-canonical

Nyquist	3	89%
$\theta=45^{\circ}, V=1500 \mathrm{~m} / \mathrm{s}$	6	92.9%
Non-canonical	6	0%
Nyquist		

Nyquist Criteria: : $\Delta x \leq \frac{V}{4 f \sin (\theta)}$

On-the-fly extraction

On-the-fly extraction

$i_{x} \quad i_{i l}$. Common source $x, l^{2} y$ •index number

Able to extract (simultaneous)

- common source gathers
- common receiver gathers

Observations

Seismic surface data is highly redundant

- exhibits low-rank structure in proper permutation
- low-rank structure can only be observed w/o working in small windows

Parallel scalable algorithms are available that work on real data

- source experiments can be generated on the fly

Instance of true multi-azimuth processing

Observations

Seismic surface data is highly redundant

- exhibits low-rank structure in proper permutation
- low-rank structure can only be observed w/o working in small windows

Parallel scalable algorithms are available that work on real data

- source experiments can be generated on the fly

Instance of true multi-azimuth processing
Compression is remarkable despite inherent oversampling...

Observations

Seismic surface data is highly redundant

- exhibits low-rank structure in proper permutation
- low-rank structure can only be observed w/o working in small windows

Parallel scalable algorithms are available that work on real data

- source experiments can be generated on the fly

Instance of true multi-azimuth processing

Observations

Seismic surface data is highly redundant

- exhibits low-rank structure in proper permutation
- low-rank structure can only be observed w/o working in small windows

Parallel scalable algorithms are available that work on real data

- source experiments can be generated on the fly

Instance of true multi-azimuth processing
Attained compression will be a game changer in how we handle data during inversion.

Low-rank representation of omnidirectional subsurface extended image volumes

Marie Graff-Kray, Rajiv Kumar and Felix J. Herrmann

SLIM ${ }^{4}$
University of British Columbia

Seismic imaging

- Forward propagate source wavefields
- Back propagate receiver wavefields
- Cross-correlate wavefields at subsurface locations

Seismic imaging w/ extensions

- Conventional imaging extracts zero-offset section only
- Extension/lifting corresponds to new experiment w/ sources/receivers anywhere in subsurface
- Near isometry

Zero offset (migration)

Seismic imaging w/ extensions

- Parametrized by subsurface horizontal offset or angles
- Computed \& stored for small subsets of offsets/angles
- Do not explore underlying low-rank structure

Extended images: challenges

- use all subsurface offsets (6D volume for 3D model)
- 2-way wave-equation
but.... we can never hope to compute or store such an image volume!

Can we work with these volumes implicitly?

Extended images: challenges

- use all subsurface offsets (6D volume for 3D model)
- 2-way wave-equation
but.... we can never hope to compute or store such an image volume!
quadratic in image size
Can we work with these volumes implicitly?

When "the dream" comes true

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Past

Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

When "the dream" comes true

Computation of full-subsurface offset volumes is prohibitively expensive in 3D (storage \& computation time)

Past
Can not form full E but action on (random) vectors allows us to get information from all or subsets of subsurface points

Present

Can mot form full E using action on (random) vectors allows us to get information from all or subsets of subsurface points

Efficient ways to extract information from highly compressed image volumes

Extended images via probing

Extended images

Given two-way wave equations, source \& receiver wavefields are defined as

$$
\begin{aligned}
& H(\mathbf{m}) U=P_{s}^{T} Q \\
& H(\mathbf{m})^{*} V=P_{r}^{T} D
\end{aligned}
$$

where
$H(\mathbf{m})$: discretization of the Helmholtz operator
Q : source
D : data matrix
P_{s}, P_{r} : samples the wavefield at the source and receiver positions
m : slowness

Extended images

Organize wavefields in monochromatic data matrices where each column represents a common shot gather

Express image volume tensor for single frequency as a matrix

$$
E=V U^{*}
$$

Extended images - in the past

Too expensive to compute (storage \& computational time)

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right]$

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Extended images - at present

Too expensive to compute (storage \& computational time)

Instead, probe volume with tall matrix $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right]$

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $\mathbf{w}_{i}=[0, \ldots, 0,1,0, \ldots, 0]$ represents single scattering points

Other choice for W ? And how many vectors are needed ? for example:

- random (Gaussian or Rademacher) vectors
- singular vectors from (randomized) SVD

Low-rank representation (5 Hz)

SVD on monochromatic extended image volumes

Rank of the extended image volume

From the formula

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

the rank of E is given by the rank of the data matrix D

So, we take r probing vector $W=\left[w_{1}, \ldots, w_{r}\right]$
— random + I/-I with probability 0.5

- Gaussian random with 0 mean \& variance I
- our contribution: orthogonal basis of the range of E

Representation of the extended image

From the formula

$$
\widetilde{E}=E W=H^{-*} P_{r}^{\top} D Q^{*} P_{s} H^{-*} W
$$

where $W=\left[w_{1}, \ldots, w_{r}\right]$ are Gaussian random vectors

Our representation consists of building an orthogonal basis Q of the range of E
such that Q is the r first columns of Q-matrix of the QR-factorization of $\tilde{E}=E W$

Representation of the extended image

From

$$
[Q, E Q]
$$

we want to extract information about E (diagonal, columns, off-diagonals...)

Two possible ways to do it:
I. using the randomized SVD algorithm [I]
(actually only steps 4 and 5, see next slide)
2. using the randomized (off) diagonal extraction formula [2]
(or any other diagonal of E thanks to a permutation matrix P)

I. Randomized SVD algorithm

Original algorithm from [I]:

I.

$$
Y=E W
$$

probe full extended image volume with virtual sources
2. QR factorization
3. probe again with new virtual sources
4. $[U, S, V]=\operatorname{svd}(Z)$

SVD factorization (first few singular values)
5.

$$
U \leftarrow Q U
$$ update left singular vectors

For us, steps I to 3 are given by $[Q, E Q]$ by probing only from the right if doing so, step 5 becomes an update of right singular vectors: $V \leftarrow Q V$ Finally

$$
E \simeq U S V^{*}
$$

2. Randomized diagonal extraction

Original formula from [2]:

$$
\operatorname{diag}(E) \approx\left(\sum_{i=1}^{\ell} w_{i} \odot\left(E w_{i}\right)\right) \oslash\left(\sum_{i=1}^{\ell} w_{i} \odot w_{i}\right)
$$

for $W=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{\ell}\right],+\mathrm{I} /-\mathrm{I}$ with probability 0.5 random vectors and $\ell \gg N$ (too expensive)

With an orthogonal basis Q :

$$
\operatorname{diag}(E)=\sum_{i=1}^{r} q_{i} \odot\left(E q_{i}\right)
$$

Our contribution: take only r vectors spanning an orthogonal basis of the range of E (exact if r is the rank of E)

2. Randomized part extraction

For the diagonal:

$$
\operatorname{diag}(E)=\sum_{i=1}^{r} q_{i} \odot\left(E q_{i}\right)
$$

For another diagonal, let P be a permutation matrix

$$
\operatorname{offdiag}(E)=\sum_{i=1}^{r}\left(P q_{i}\right) \odot\left(E q_{i}\right)
$$

Orthogonal basis vs random basis

Diagonal extraction of the EIV for different representation $(5 \mathrm{~Hz}, r=15)$

with orthogonal basis
[Q,EQ]

with Gaussian basis [W,EW]

Invariance formula for EIVs

Invariance formulation for EIVs...

For monochromatic data and sources

$$
E=H[m]^{-*} \underbrace{P_{r}^{\top} D Q^{*} P_{s}}_{\text {invariant }} H[m]^{-*}
$$

then for two models m_{1} and m_{2}

$$
H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*}=H\left[m_{2}\right]^{*} E_{2} H\left[m_{2}\right]^{*}
$$

Invariance formulation for EIVs...

For monochromatic data and sources

$$
E=H[m]^{-*} \underbrace{P_{r}^{\top} D Q^{*} P_{s}}_{\text {invariant }} H[m]^{-*}
$$

then for two models m_{1} and m_{2}

$$
H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*}=H\left[m_{2}\right]^{*} E_{2} H\left[m_{2}\right]^{*}
$$

we deduce E_{2} from E_{1}

$$
E_{2}=H\left[m_{2}\right]^{-*} H\left[m_{1}\right]^{*} E_{1} H\left[m_{1}\right]^{*} H\left[m_{2}\right]^{-*}
$$

Only $2 r$ PDEs solves!

...from Low-Rank representation

From $\left[Q_{1}, E_{1} Q_{1}\right]$, we get a low-rank formulation for E_{1}

$$
E_{1}=L_{1} R_{1}^{*}
$$

with L_{1} and R_{1} two $N \times r$ matrices given by

$$
\begin{aligned}
L_{1} & =U_{1} \sqrt{S_{1}} \\
R_{1} & =V_{1} \sqrt{S_{1}}
\end{aligned}
$$

[U_{1}, S_{1}, V_{1}] from randomized SVD

New extended image

Now we deduce

$$
\begin{aligned}
& L_{2}=H\left[m_{2}\right]^{-*} H\left[m_{1}\right]^{*} L_{1} \\
& R_{2}=H\left[m_{2}\right]^{-1} H\left[m_{1}\right] R_{1}
\end{aligned}
$$

to compute

$$
E_{2}=L_{2} R_{2}^{*}
$$

with only $2 r$ extra PDEs solves!

Invariance formula for EIVs (example I)

background model I
(correct)

background model 2 (incorrect)

Invariance formula for EIVs (example I)

Diagonal extraction of the low-rank EIV $(5-30 \mathrm{~Hz}$, step $0.5 \mathrm{~Hz}, r=15-45)$

direct reconstruction model I

direct reconstruction model 2

using invariance formula from model 2 to get model I from wrong to correct!!!

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

Ns $=\#$ sources	$N x=\#$ probing points
$N=\#$ grid points	$r=\#$ estimated rank

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

Ns $=\#$ sources	$N x=\#$ probing points
$N=\#$ grid points	$r=\#$ estimated rank

we win when $N x \ll N s$
but usually $\mathrm{Nx} \sim \mathrm{N}$ (Dirac probing vectors)

Complexity analysis

Full subsurface offset extended images:

	\# of PDE solves	size of EIV
conventional E	2 Ns	$\mathrm{N} \times \mathrm{N}$
mat-vec $\tilde{E}=E W$	2 Nx	$\mathrm{N} \times \mathrm{Nx}$
low-rank L, R	4 r	$2 \mathrm{~N} \times \mathrm{r}$

Ns $=\#$ sources	$N x=\#$ probing points
$N=\#$ grid points	$r=\#$ estimated rank

we win when $r \ll$ Ns okay from low-rank approx. of data matrix!

Observations \& Conclusions

Full-offset image volumes can be formed via probing

Form orthonormal basis that spans its range
— low-rank approximation via randomized SVD
— extract (off)diagonals from image volumes

Natural "parametrization" from linear algebra

Acknowledgements

This research was carried out as part of the SINBAD project with the support of the member organizations of the SINBAD Consortium.

Acknowledgements

The authors wish to acknowledge the SENAI CIMATEC Supercomputing Center for Industrial Innovation, with support from BG Brasil, Shell, and the Brazilian Authority for Oil, Gas and Biofuels (ANP), for the provision and operation of computational facilities and the commitment to invest in Research \& Development.

Thank you for your attention

